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We consider the following motion of a body about a fixed point in a 

Newtonian force field: We assume that the body has dynamic symmetry 

(A = B), that the fixed point coincides with the center of mass of the 

body, and that the initial conditions are the following: the transverse 

components on angular velocity are equal to zero (pu = qu = 0) and the 

longitudinal component is arbitrary (re # 0). In this case, as is known, 

the axis of symmetry of the body would maintain a fixed direction if it 

were not subjected to the Newtonian force field. It is therefore the 

existence of a Newtonian force field that produces all the effects and 

motions of the axis of the body in the present example. The action of 

the Newtonian field enters into this example in its pure form, uncompli- 

cated by more general initial conditions. This is the fact that makes 

this type of motion worth studying. 

This problem of a motion of a rigid body about a fixed point can be 

integrated by quadratures as a particular case of two more general inte- 

grable cases 11-31. 

Let 8, q~, 9 be the Eulerian angles, where 8 is the angle between the 

axis of symmetry of the body and the line from the center of attraction 

to the motionless center of mass of the body. The integrals of the 

energy and angular momentum then become 

sin2 O@ + O2 = Z + VUIJ~ cos2 0 

sin2 &JI = /3 - br, cos 0 
,~3~-’ b,c 

-4 ’ .4 

Here ro is the component of angular velocity along the axis of 
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symmetry (re remains constant by virtue of the equations of motion); c[ 
and p are constants of Integration; C is the longitudinal moment of 
inertia; A is the transverse moment of inertia; &A is the gravitational 
constant; R is the distance from the center of mass of the body to the 
center of attraction. 

The variables in this system are easily separable, and the problem 
reduces to quadratures 

For our initial conditions (pO = q0 = 0) we have 

Consequently 

The motion can be analyzed without inverting the elliptic quadratures 
(1) and (2). It follows from (1) that the motion takes place in an intet- 
val of values of u bounded by two values: the initial value me, and a 

value ul, related to uu by the formula 

On a unit sphere with center at the 
center of mass of the body, the trace of 
the axis of the body will thus describe a 
curve (Fig. 1) between the parallels u0 
and ul. Fig. 1. 

Let V be the angle between the curve de- 

scribed by the trace of the axis of the body and a meridian on the unit 
sphere: zm = sin fldry, t ‘I = de, as can be seen from Fig. I, 

Then 

It follows from this that tan V = 0 if u = uoS that is, there is a 
reversal point on the parallel u = me; tan V = ~JJ if u = ul, that is. the 
trajectory is tangent to the parallel ul. 

On the parallel a~* the precession velocity (2) is zero: {(ue} = 0; 
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on the parallel ul the precession velocity, as can easily be shown, 

reaches its maximum value +(ul) = i,,,. We introduce the average pre- 

cession velocity 

<16> = 5 rib w + ;P WI = f 16 (4 

Substituting (3) into (2) and taking (4) into account, we find 

(4) 

<ljJ> =-33u&$ Cl-IS 8, 

0 1 + 3 sin2 01 (0 / ro)2 [(A - C) / C] (A / C) (5) 

Here 8, is determined by 8, and the parameters of the problem, in 

accordance with (3). If o/ro << 1. that is, the effect of the perturba- 

tions is small, then. to within terms of second order, we have 

(4) z - 30% !I$ cos e0 (6) 
0 

Let us consider formula (3). The curves for various values of the 
parameter 

5 = b2r,2/mo” (7) 

are schematically represented in Fig. 2. From these curves we can under- 

stand the nature of the motion. Let us first consider the region 5 > 0, 

or. stated in another way, m > 0. that is, when the body is elongated. 
This region is included between the diagonals u,, = + ul and contains the 

al-axis. If j = g2 > 1, then each value of u,, is associated with only 

one value of ~1, 

uoi8 
which is closer to u. for larger values of ;; 1 ul\ > 

and ul and ue have the same sign, 

The curve for 5 = 1 is tangent to 

the ul-axis. For 5 = 51 < 1 each 

value of u,, can be associated with 

only one or three values of ul (the 

polynomial f(u) will have two or four 

real roots including uc). But in the 

Fig. 2. 

n b 

Fig. 3. 

case of a real motion, the sign of U) must be the same as that of u0 



258 V.V. Beletskii 

(this is easily seen if we consider the function f(u) for this case, in 

accordance with formula (1)). 

I”J * 

We will again have the condition lull > 

In the case under consideration (5 > 0) the motion will have the 
following nature: The parallel UI lies closer to the pole of the unit 

sphere than the parallel II*. The curve, as was indicated earlier, is 

tangent to the parallel uI and has a point of reversal at u0 (Fig, 3a). 
For the case of a compressed body III < 0, that is, 5 < 0. In this case 

for each value of u0 we will always have one value of ul (Fig. 2). More- 

over, if 5 < - 1 (for example, 5 = 5, or 5 = i4 in Fig. 2). then UI will 
have the same sign as ue, and lull < \ac/. The points of reversal will 

lie on the initial parallel ue, which is closer to the pole than is uI 

(Fig. 3b). If, on the other hand, 5 = c5 > - 1, then ul and uc will have 

opposite signs, and the trace of the axis of the satellite as it moves 

in its path will intersect the equator of the unit sphere; qualitatively 

the motion will be of the type shown in Fig. 3b. 

It should be noted that the curve 5 = - 4 is tangent (Fig. 2) to the 

horizontal lines u,, = f 1 at the points uI = f 1. It follows from this 

that the motion a0 = ul = f 1 (rotation about an axis which coincides 

with the direction toward the center of attraction) will be stable if 

(51 = I<31 > 4 and will be unstable if 151 = f$,l < 4, since in the 

first case an infinitesimal deviation of u0 from unity will correspond 

to an infinitesimal deviation of UI from unity, whereas in the second 

case, as can be seen from Fig. 2, no matter how small u,, deviates from 

unity, u1 will deviate from unity by a finite amount. If 5 > 0, that is, 

if the body is elongated, then, as can be seen from Fig. 2, the motion 

u0 = IaI = f I is always stable. Thus, the necessary and sufficient con- 

ditions for stability of rotation about a vertically oriented aXiS Will 

be the conditions 

This result agrees with one of the results obtained in 121, where 

the stability conditions were obtained by the Liapunov-Chetaev method. 

We observe that aI - f 1 as 5 - + 0, which corresponds to a conver- 

sion of spatial motion into plane motion as rc - 0. In this case 
<F - 0, as can be seen from (5)‘ and the trace of the axis of symmetry 

of the elongated body will oscillate, passing through the pose (ul = +l 

or -1, depending on the sign of ue), between the extreme values bounded 

by the parallel 8, = arc cos ue. 

If 5 - - 0, then uI - - u,,, and the axis of symmetry of the com- 

pressed body will oscillate. passing through the equator, between 

parallels which are equidistant from the equator. The limiting line 
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5 = i* = f m iS 81SO 

If r. is close to 

of 8 compressed body) 

shown in Fig. 2. 

zero, or, in any event, rO << w, then (for the case 

259 

snd the period of precession will be 

The period of nutation will be close to the period of plane oscilla- 

tions 113 

T- 4K fkz) 

O-- t/369@-AA)/C ’ 
k2 = co9 8, 

Here K is the complete elliptic integral of the first kind, Let us 

consider the ratio of periods 

EE= 2K (co.9 go) c ‘0 case, 

T, zz y’3(C--A)/ c xgsin4L 
(3) 

Since 

it follows that for the case of small oscillations in a narrow band 

about the equator (8, = SO0 - 8*, where 8* is small) we will have 

approximately 

T Bz C/AsinB* 2 

T, J’-3(C-A)/C@ 

Since, by assumption, r,, << o and 6* is small, it follows that during 

one precession period there ~111 be a great many nutation periods, that 

is, a small segment of the trajectory on the unit sphere will contain 

many “petals”. However, 8s the distance of the initial Point from the 

equator increases, there will be an increase not only in the amplitude 

of the nutation OSCill8tiOnS. but also in the width of the trajectory 

petals (since K(cos’ 8,) in the numerator of formula (8) increases while 

sin* 0, in the denominator decreases). It should also be noted that in 

the general case the difference A = u1 - u. between the cosines of the 

boundary latitudes is given by the formula 

A = 2 cos 61 sin2 & 3c 

1 + x sin? O1 
(?+ 

This follows from (3). 



260 V.V. Beletskii 

For the case of very rapid ratation of the body. we have o/r0 << I, 
K << 1, and it follows from Fig. 2 that 6, = 6, + 6, where 6 is small. 
Then, by formula (3) 

A = 2%~ (1 - u,+), or A -6(~)P(~)~eos6,sina$ (W 

In this case, in 
have a large value, 

accordance with (6), the period of 
of the order of ~~1” 

precession will 

T, = 2n 

3[V-- ( 1 !k 
C) I C] cos e&l 0) 

Let us estimate the period of the nutation oscillations for a rapidly 
rotating body. 

Let u = u0 + x, where x is small. Then. by (l), leaving only first- 
order and second-order termqunder the radical sign, we have 

Hence the half-period of the nutation oscillations is 

We see that the oscillations in the nutatton angle will be. rapid. The 
trajectory on the unit sphere will contain a large number of fine 
petals, 

In conclusion, we observe that if A >> C, the motion will approach 
the form of plane oscillations (in the same sense as for r0 -. 0), since 
in the limiting case (C = 0) formulas (1) and (2) immediately yield plane 
oscillations. 
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